# Introduction to Food as Medicine

McMaster Medical School Jan 31st 2019



SC Ganguli MD, FRCPC
Gastroenterology Division
McMaster University



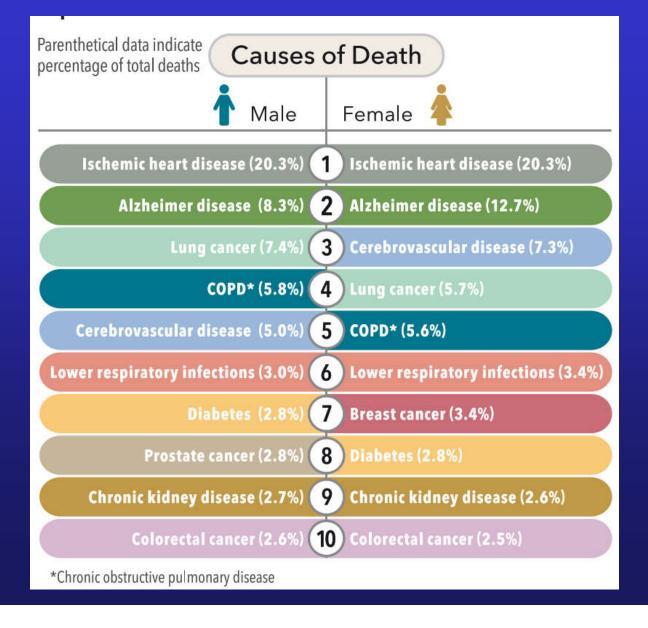




#### <u>Subhas Ganguli – Conflict of Interest Slide</u>

Last 2 years: None

Prior to 2 years ago:


Clinical trials conducted for: Novartis, Abbott, Janssen, Dynogen, Proctor & Gamble, Ferring, Glaxo Smith Klein, Boeringer Ingelheim

**Speakers bureau:** Abbott, Astra-Zeneca, Medical Futures (Iberogast), Novartis, Nycomed, Pharmascience, Janssen, Takeda

**Advisory Board:** Schering, UCB Pharma, Forest Laboratories, Janssen, Ferring Research Grant: Glaaxo

**Grants/Research Support**: GSK

## Top 10 Causes of Death, USA, 2013





# Risk Factors for Top 10 Causes of Death, USA, 2013

|    | Risk Factors       |                   |  |  |  |
|----|--------------------|-------------------|--|--|--|
|    | <u>Male</u>        | <u>Female</u>     |  |  |  |
| 1  | Dietary            | Dietary           |  |  |  |
| 2  | Smoking            | Blood Pressure    |  |  |  |
| 3  | Blood Pressure     | Smoking           |  |  |  |
| 4  | Body Mass Index    | Body Mass Index   |  |  |  |
| 5  | Blood Glucose      | Blood Glucose     |  |  |  |
| 6  | Total Cholesterol  | Total Cholesterol |  |  |  |
| 7  | Physical Activity  | Physical Activity |  |  |  |
| 8  | Kidney Function    | Kidney Function   |  |  |  |
| 9  | Air Pollution      | Air Pollution     |  |  |  |
| 10 | Occupational Risks | EtOH / Drugs      |  |  |  |

SCG 2018



L Marczak JAMA 2016:315(3):241

## How Important is Lifestyle?





#### Healthy Lifestyle Factors & US Life Expectancy

Aim: Assess impact of lifestyle factors on US mortality & life expectancy.

Design: prospective cohort study of:

78,865 women from NHS followed for 34 yrs (1980-2014)

44,354 men from HPFUS followed for 27 yrs (1986-2014)

#### Low risk lifestyle factors:

- 1) Never smoking
- 2) BMI 18.5-24.9
- 3) >= 30 min/d moderate/vigorous physical activity
- 4) Moderate alcohol intake (5-15 g women, 5-30 g men)
- 5) High diet quality score (upper 40%)



Total lifestyle score: 0-5 scale



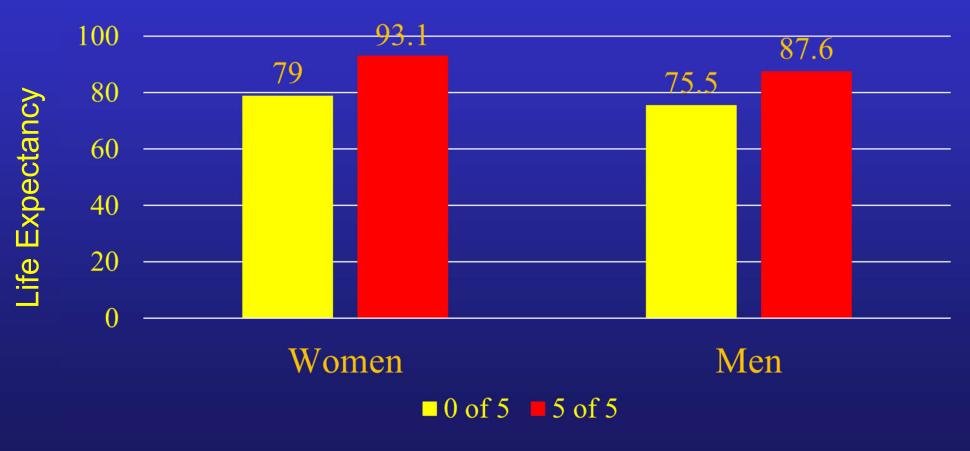
Y Li Circulation 2018 in press DOI: 10.1161/CIRCULATIONAHA.117.032047

## Healthy Lifestyle Factors & US Life Expectancy Alternate Healthy Eating Index Score

Assigned points (0 to 10) for intake of each of 10 components:

#### High intake of:

- 1) Vegetables
- 2) Fruits
- 3) Nuts
- 4) Whole grains
- 5) Polyunsaturated fats
- 6) Omega 3 fatty acids


#### Low intake of:

- 7) Red meats
- 8) Processed meats
- 9) Sugar sweetened beverages



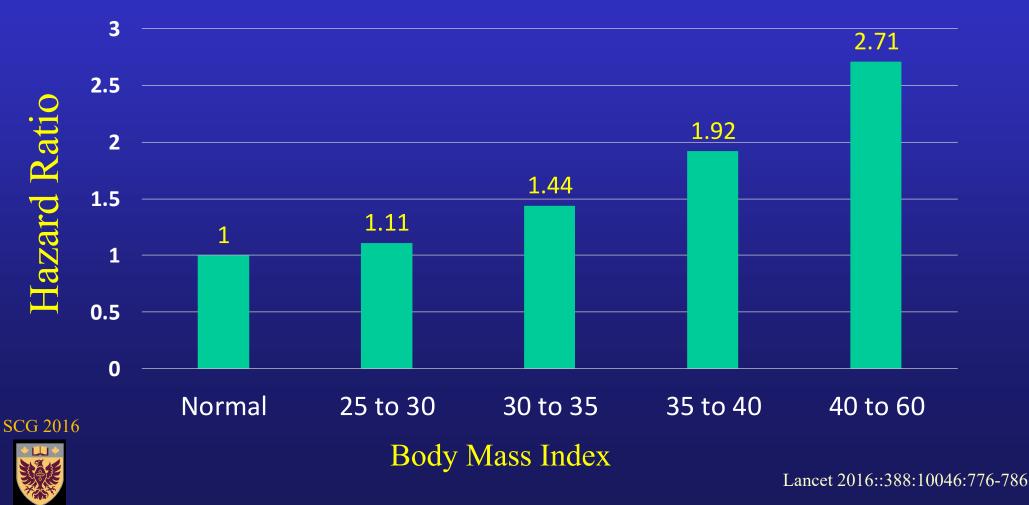
Y Li Circulation 2018 in press DOI: 10.1161/CIRCULATIONAHA.117.032047

#### Healthy Lifestyle Factors & US Life Expectancy Life Expectancy at 50 Yrs of Age



Y Li Circulation 2018 in press DOI: 10.1161/CIRCULATIONAHA.117.032047

## Obesity

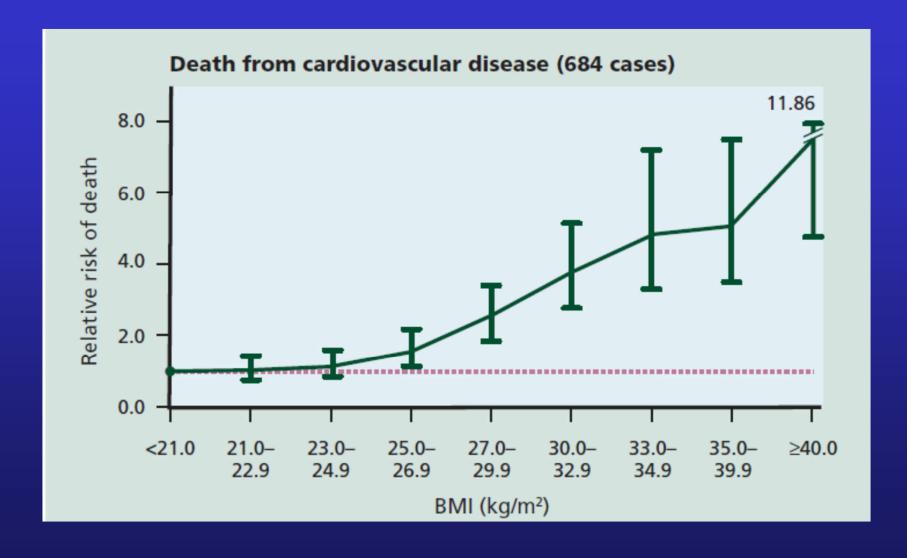

SCG 2012





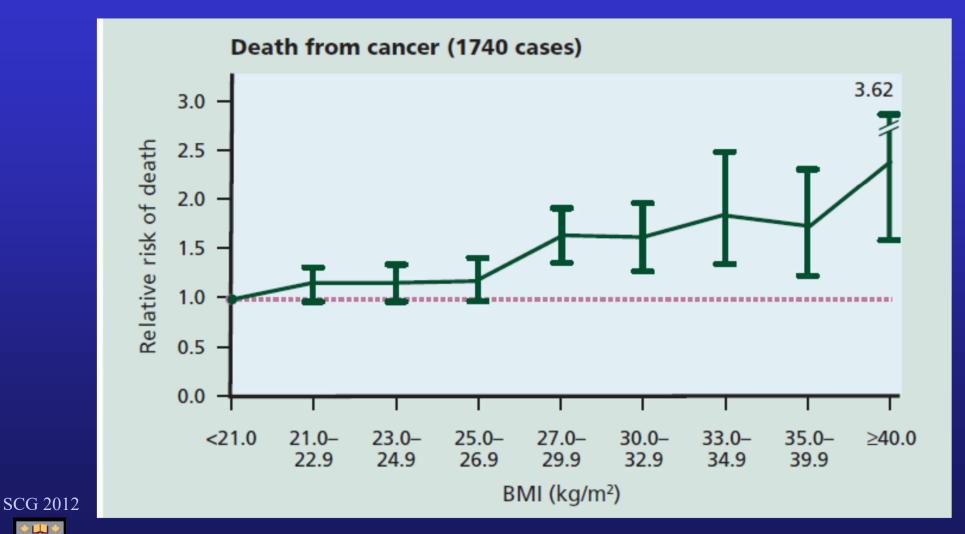
## BMI and all-cause mortality

(Global, Non-smokers, healthy, after 5 yrs) (198 prospective studies; 3.9 million participants)




## Health Problems Associated with Obesity

| Relative risk<br>greater than 3               | Relative risk 2–3                      | Relative risk 1–2                                      |  |  |
|-----------------------------------------------|----------------------------------------|--------------------------------------------------------|--|--|
| Type 2 diabetes<br>Gallbladder disease        | Coronary heart disease<br>Hypertension | Cancer<br>Reproductive                                 |  |  |
|                                               |                                        | hormone<br>abnormalities                               |  |  |
| Dyslipidaemia                                 | Osteoarthritis (knees)                 | Polycystic ovary<br>syndrome                           |  |  |
| Insulin resistance                            | Hyperuricaemia<br>and gout             | Impaired fertility                                     |  |  |
| Breathlessness                                |                                        | Low back pain                                          |  |  |
| Sleep apnoea                                  |                                        | Increased risk of<br>anaesthesia<br>complications      |  |  |
|                                               |                                        | Fetal defects<br>(associated with<br>maternal obesity) |  |  |
| Adapted with permission from WHO <sup>1</sup> |                                        |                                                        |  |  |

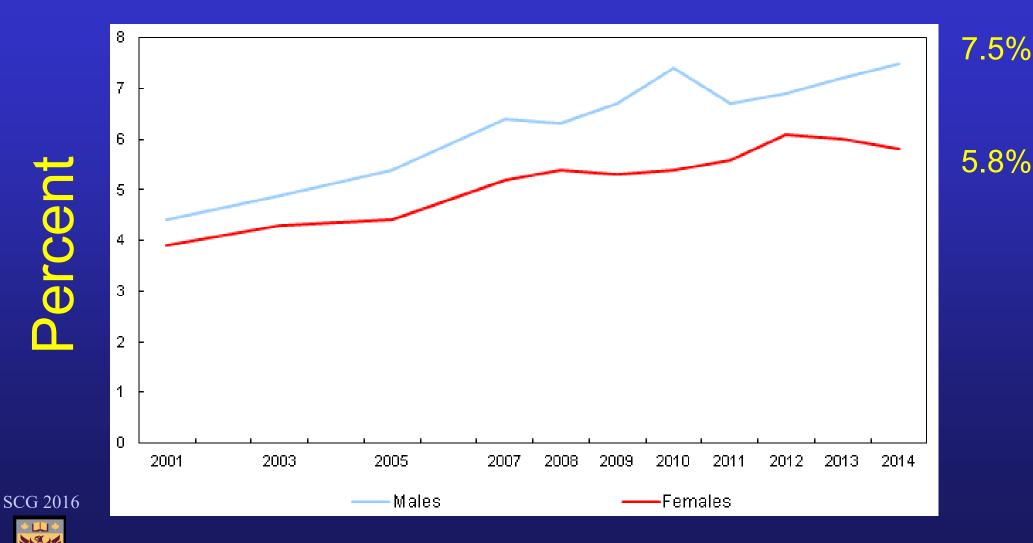



#### BMI and Death from CVD





#### BMI and Death from Cancer






# ercent

## Self-Reported Diabetes in Canada

(2001 to 2014, 12 and older)





## Can a Conventional

Approach

Stop Diabetes?





## RCT of lifestyle vs metformin in 11832527 Prediabetics: DPP

#### **Aim**

Does a lifestyle intervention or treatment with metformin prevent or delay the onset of diabetes?

#### **Design**

Multicenter RCT, Placebo controlled, double blind. ITT analysis

#### **Population**

(n=3234 in 27 US centers) meeting all the below criteria:

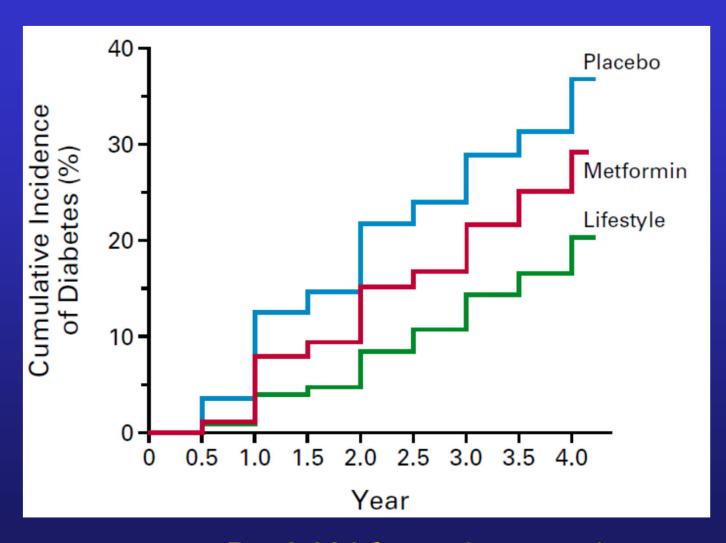
- 1) BMI ≥ 24
- 2) Fasting [Glu] = 5.3 6.9 mmol/L
- 3) 2 hr [Glu] = 7.8 11.0 mmol/L after 75g oral glucose load



SCG 2016

# RCT of lifestyle vs metformin in Prediabetics: DPP

#### **Interventions**


- 1) Standard lifestyle recommendations + placebo
- 2) Standard lifestyle recommendations + Metformin 850 mg BID
- 3) Intensive lifestyle modification
  - Goal: achieve/maintain 7% weight reduction
  - Rx: 16 sessions in 24 wks then monthly
  - 1) Moderate physical activity for ≥ 150 minutes per week
  - 2) Diet: 'healthy low calorie, low fat diet'

#### Outcomes – Dx of diabetes (retested at 6 weeks):

- 1) Annual oral glucose tolerance test
- 2) Semi-annual fasting glucose

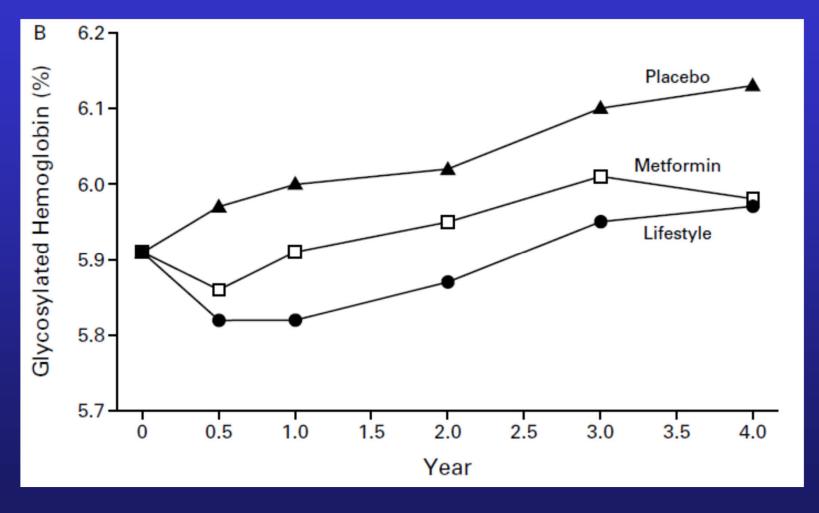


### DPP: Incidence of Diabetes



NNT (3 yrs)

MF = 13.9


Lifestyle = 6.9





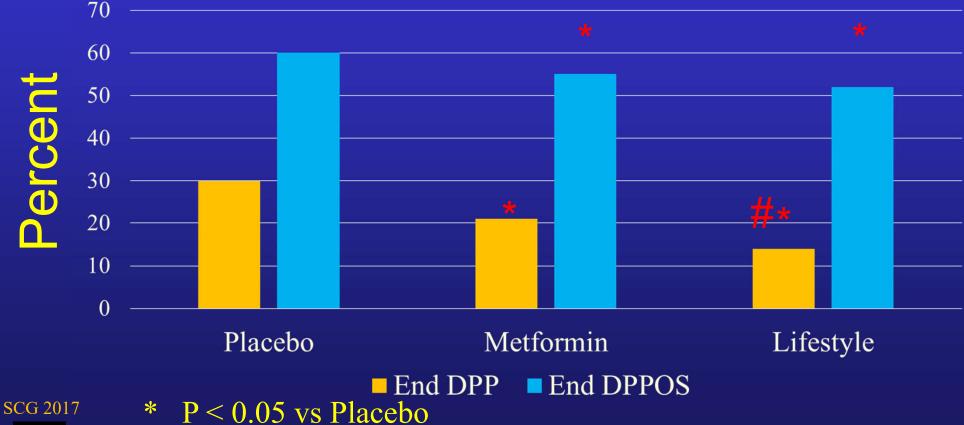
P < 0.001 for each comparison

## DPP: Glycosylated Hemoglobin








## Long Term Results

SCG 2012



DM Nathan Lancet Diabetes Endocrinol 2015:3:866-75

## DPPOS & DPP Outcomes at end Rate of Developing Diabetes at 15 yrs



# P < 0.05 vs Metformin



## What to do?

SCG 2012



### 21831992

## Red Meat Consumption & NIDDM

Prospectively followed 37,083 men (Health Professionals follow-up study, 1986-2008) & 79,570 women (Nurses Health Study I 1976-) plus 87,504 (NHS-II, 1989-) who were free of CV disease and cancer at baseline. Diet assessed by validated questionnaire & updated every 4 years. Excluded baseline IDDM & NIDDM, CVD, cancer

#### <u>Aims</u>

- 1) Assess effect of meat consumption on NIDDM in large cohorts
- 2) Updated meta-analysis
- 3) Estimate effect of substituting low fat dairy, nuts, whole grains for red meat on NIDDM risk

Used data from present study to update previous meta-analyses

SCG 2016 Multivariate adjustments for major lifestyle & dietary risk factors.

## Red Meat Consumption & NIDDM

#### Multivariate analysis to adjust for:

- 1) Intakes of : total energy (in quintiles)
- 2) Age, BMI
- 3) Race (white, nonwhite)
- 4) Smoking status (never, past, current [3 ranges])
- 5) EtOH intake (0 plus 3 levels)
- 6) Physical activity (5 levels)
- 7) Family Hx: DM
- 8) Baseline history of Htn, hypercholestrolemia
- 9) Women: postmenopausal status, menopausal hormone & OCP use



## Red Meat & NIDDM: Results

#### **Incident cases of NIDDM:**

- 2438 during max 20 y followup in HPFS = 1.9%
  - 8253 during max 28 y followup in NHS-I = 2.0%
  - 3068 during max 16 y followup in NHS-II = 1.1%

Overall 13,759 cases in 4.03 million person-years = 1.7%

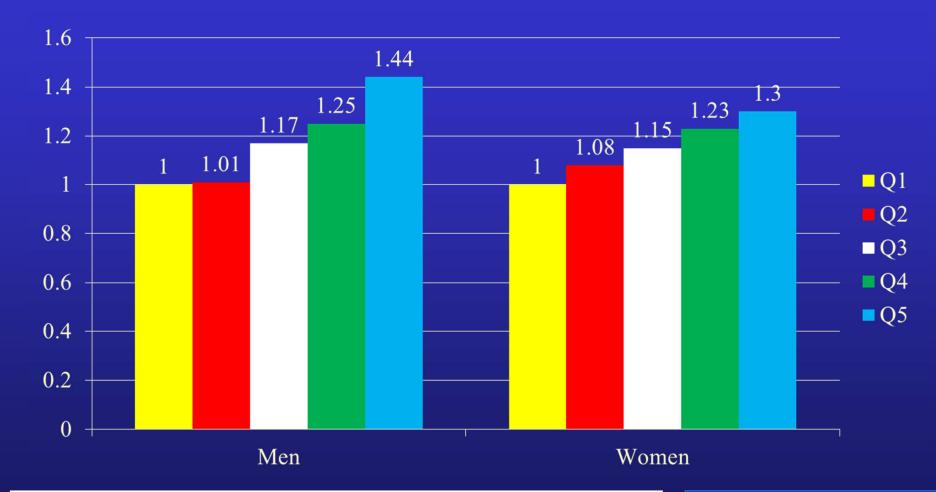
#### Definitions of a meat portion:

Unprocessed red meat = 85g = 3 oz

Hot dog = 45 g

Bacon = 28g (2 slices)

Other processed red meat = 45 g






# Increase in Hazard Ratio (%)

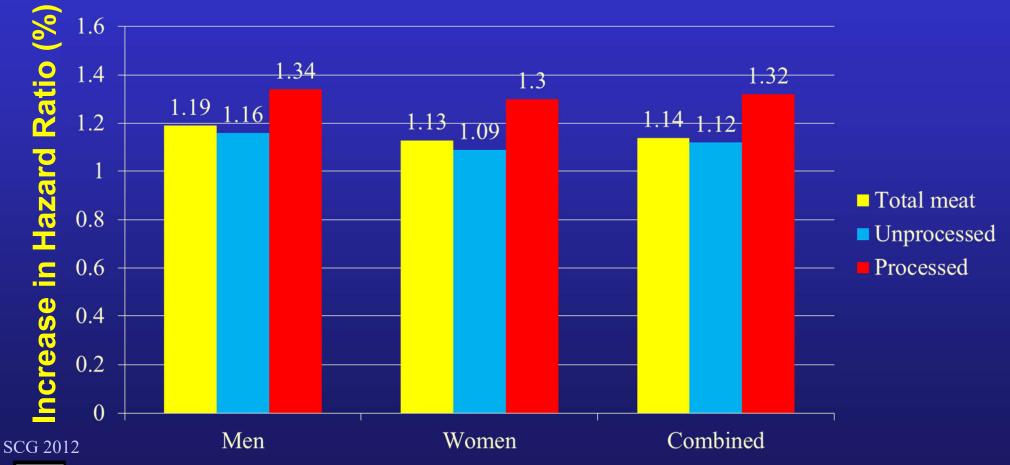
#### Total Red Meat & NIDDM

Adjusted for: BMI, Age, Calorie intake Physical activity, smoking, EtOH, race





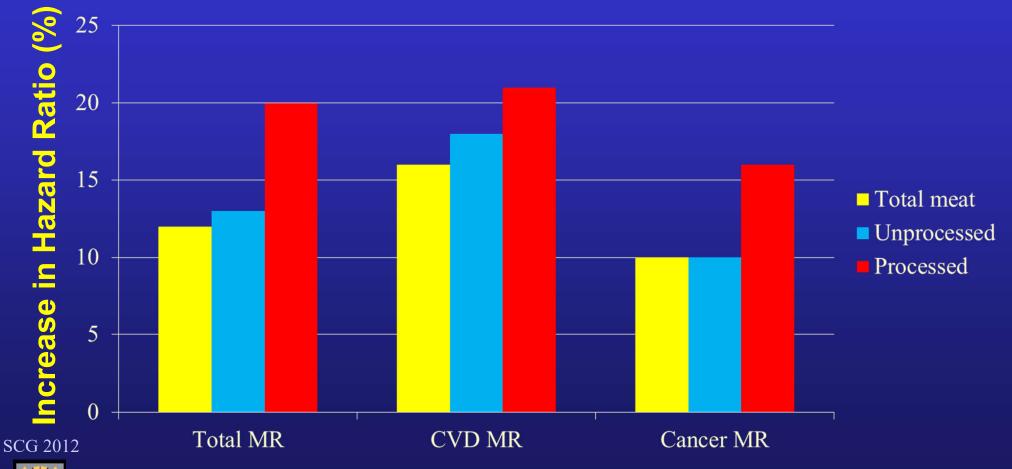



|       | <u>Q1</u> | <u>Q2</u> | <u>Q3</u> | <u>Q4</u> | <u>Q5</u> |
|-------|-----------|-----------|-----------|-----------|-----------|
| Men   | 0.25      | 0.60      | 0.94      | 1.34      | 2.02      |
| Women | 0.50      | 0.83      | 1.12      | 1.44      | 2.07      |

#### Portions per day

A Pan Am J Clin Nutr 2011;94:1088-96

## Red Meat Consumption & NIDDM


Effect of a 1 serving per day increase





## Red Meat Consumption & Outcomes

Effect of a 1 serving per day increase





CVD = cardiovascular disease

A Pan Archives IM 2012 172(7):555-63

## Adventist Study 1960-1981 Meat & Diabetes (Logistic regression)

|                        |                             | Multivariate-Adjusted<br>Relative Risk (95% CL) <sup>b</sup> |               |  |
|------------------------|-----------------------------|--------------------------------------------------------------|---------------|--|
| Outcome                | Meat Consumption            | Male                                                         | Female        |  |
| Self-Reported          | <1 day/wk (vegetarian)      | 1.0                                                          | 1.0           |  |
| Diabetes<br>Prevalence | 1+ days/wk (non-vegetarian) | 1.7(1.2,2.4)                                                 | 1.4(1.1,1.8)  |  |
| (1960)                 | <1 day/wk                   | 1.0                                                          | 1.0           |  |
|                        | 1-2 days/wk                 | 1.4(0.9,2.3)                                                 | 1.1(0.8,1.6)  |  |
|                        | 3-5 days/wk                 | 1.5(0.9,2.5)                                                 | 1.2(0.9, 1.8) |  |
|                        | 6+ days/wk                  | 2.7(1.6,4.6)                                                 | 2.3(1.6,3.3)  |  |
| Diabetes on the        | •                           | , , , , ,                                                    |               |  |
| Death Certifi-         | <1 day/wk (vegetarian)      | 1.0                                                          | 1.0           |  |
| cate (1960-<br>1980)   | 1+ days/wk (non-vegetarian) | 1.9(1.2,3.1)                                                 | 1.1(0.8,1.6)  |  |
|                        | 1 day/wk                    | 1.0                                                          | 1.0           |  |
|                        | 1-2 days/wk                 | 1.6(0.9,2.9)                                                 | 1.3(0.9,2.0)  |  |
|                        | 3-5 days/wk                 | 1.6(0.8,3.0)                                                 | 1.2(0.7,1.8)  |  |
|                        | 6+ days/wk                  | 3.6(1.9,7.1)                                                 | 0.6(0.3,1.2)  |  |



## What can be done about obesity?

SCG 2012



# RCT Weight Loss with a Vegan vs a Moderate Low Fat Diet

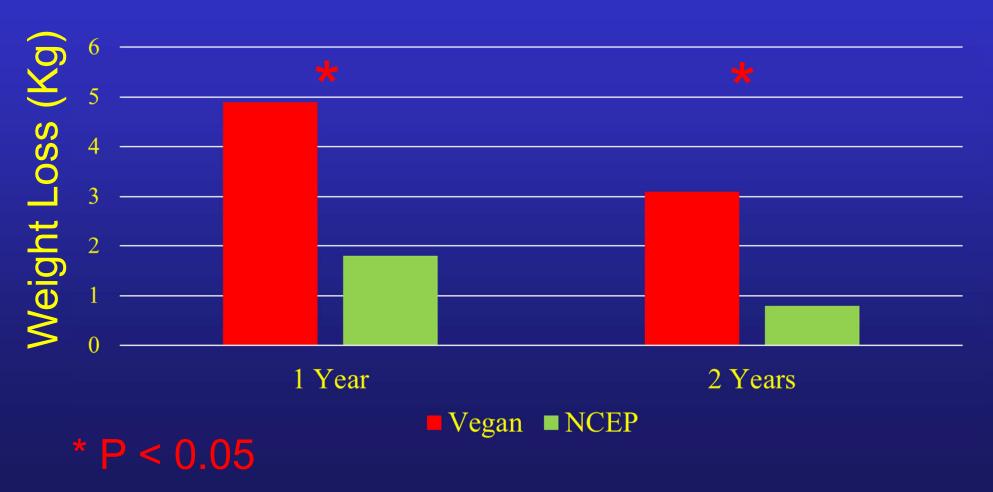
Aim: Assess extent to which weight loss achieved thru a 14 week low-fat vegan or more moderate low fat diet were maintained at 1 and 2 years after the intervention.

Population: 62 postmenopausal, overweight (BMI 26-44) women

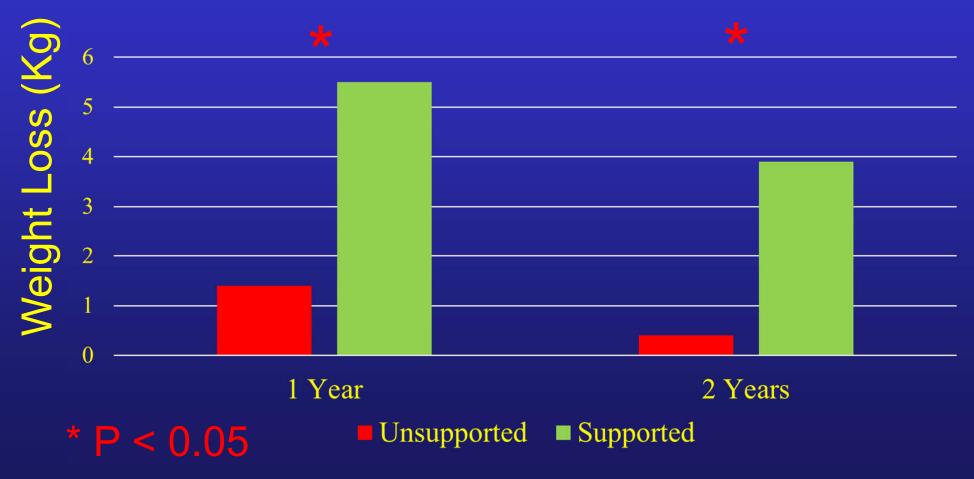
Vegan diet: Encouraged use of unrefined foods.

Control: NCEP step II diet

No restriction on energy intake for either diet group; encouraged to eat to satiety.


Weekly group meetings for first 14 weeks with MD and dietician

Part 1 (14 + 14 subjects): No support meetings after 14 weeks


SCG 2018 Part 2 (17 + 17 subjects): Support meetings 1 hr/2 weeks x 1 yr

Followed for a total of 2 years.

# RCT Vegan vs Low Fat Diet Weight Loss(Parts 1 & 2)



# RCT Vegan vs Low Fat Diet Role of Support



#### Meta: Vegetarian Diets & Weight Loss

| Study name                    | Subgroup within study | Statistics for each study |                | y Mea          |          | ean and 95% C | <u>l</u>      |            |
|-------------------------------|-----------------------|---------------------------|----------------|----------------|----------|---------------|---------------|------------|
|                               |                       | Mean                      | Lower<br>limit | Upper<br>limit | p'-value |               |               |            |
| Ferdowsian 2010 <sup>26</sup> | Vegan                 | -5.1                      | -6.3           | -3.9           | < 0.0001 |               | <b></b> ■     | 1          |
| Barnard 2009 24               | Vegan                 | -3.7                      | -5.5           | -1.9           | < 0.0001 |               | <b></b>       |            |
| Turner-McGrievy 2007 22       | Vegan                 | -3.6                      | -6.0           | -1.2           | 0.003    |               | <del></del>   | -          |
| Dansinger 2005 21             | Vegetarian            | -3.3                      | -5.6           | -1.0           | 0.004    |               | <del></del>   | -          |
| Mishra 2013b 27               | Vegan                 | -3.0                      | -3.8           | -2.2           | < 0.0001 |               |               |            |
| Kjeldsen-Kragh 1991 14        | Vegetarian            | -2.9                      | -4.2           | -1.6           | < 0.0001 |               | +=            | .          |
| Mishra 2013a <sup>27</sup>    | Vegan                 | -2.9                      | -3.6           | -2.2           | < 0.0001 |               | - <del></del> |            |
| Gardner 2007 23               | Vegetarian            | -2.6                      | -3.8           | -1.4           | < 0.0001 |               | <del></del>   | -          |
| Nenonen 1998 <sup>17</sup>    | Vegan                 | -1.8                      | -2.8           | -0.8           | 0.0002   |               | -             | <b>⊢</b> │ |
| Total                         |                       | -3.1                      | -3.7           | -2.5           | < 0.0001 |               | •             |            |
|                               |                       |                           |                |                |          | -8.00         | -4.00         | 0.00       |

#### Numbers represent weight in kilograms

# What about individuals who already have diabetes?





## RCT Vegan vs ADA diet in NIDDM

#### Population (n=99)

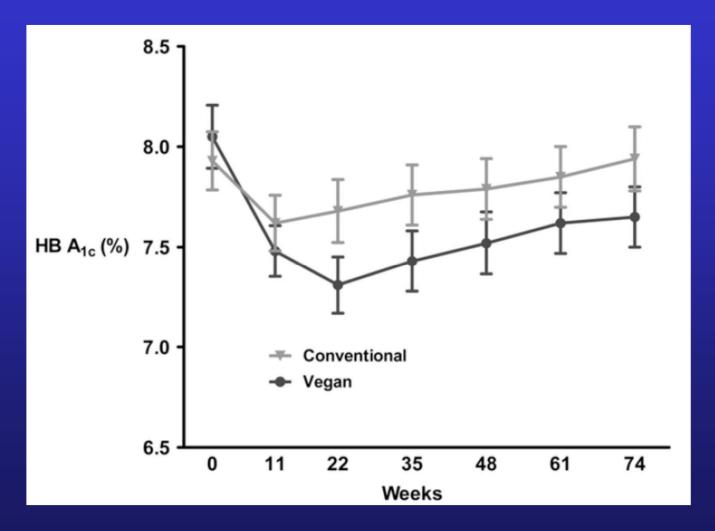
NIDDM, using hypoglycemic medications at least 6 mos.

- had to have HBA1c between 6.5% and 10.5%
- if on insulin had to be using it < 5 yrs

#### Intervention (22 weeks then to 74 weeks)

Vegan: 10% of energy from fat. Encouraged to favor low GI foods. No restrictions on portion size, energy or CHO intake. B12 pill given.

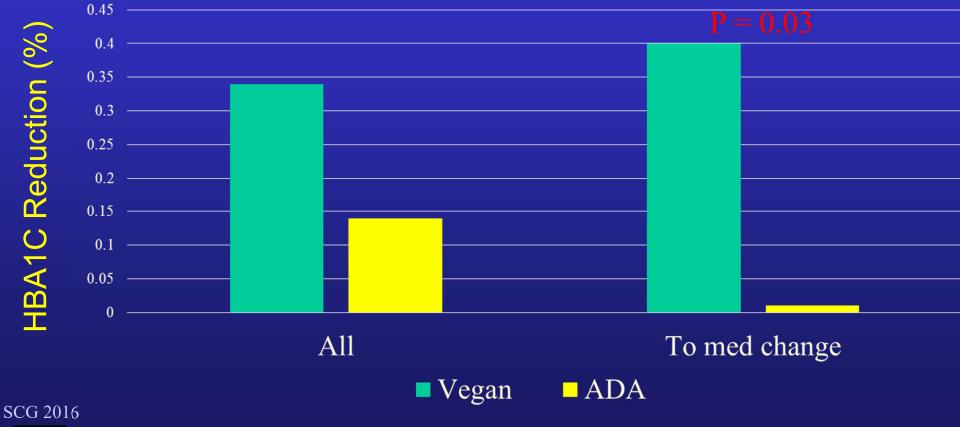
ADA diet: Individualised based on body weight, lipid concentrations. If BMI > 25 also prescribed energy intake deficit of 500-1000 cal/day


All participants asked NOT to alter their exercise habits during the intervention period

Both groups started with 1 h with dietician then weekly 1 hr meetings for nutrition/cooking instruction.

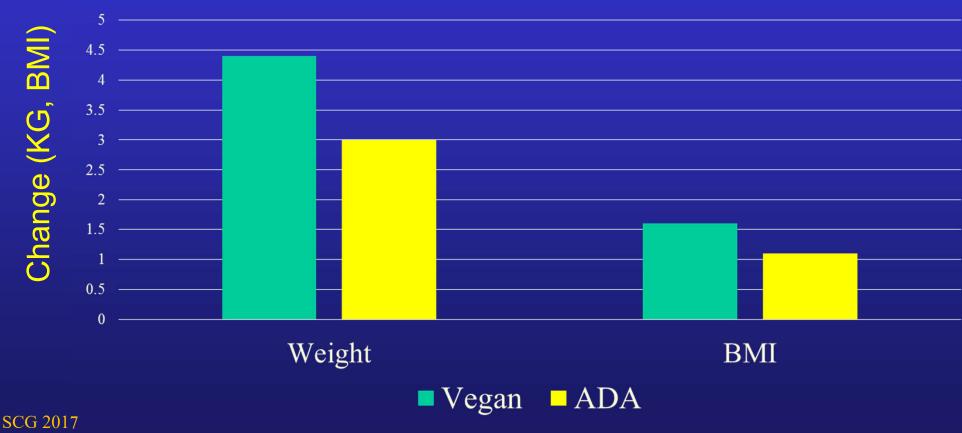
SCG 2016 Did unannounced 24 hr diet recalls at weeks 4, 8, 13, 20




### RCT Vegan vs Std Diabetic Diet in NIDDM

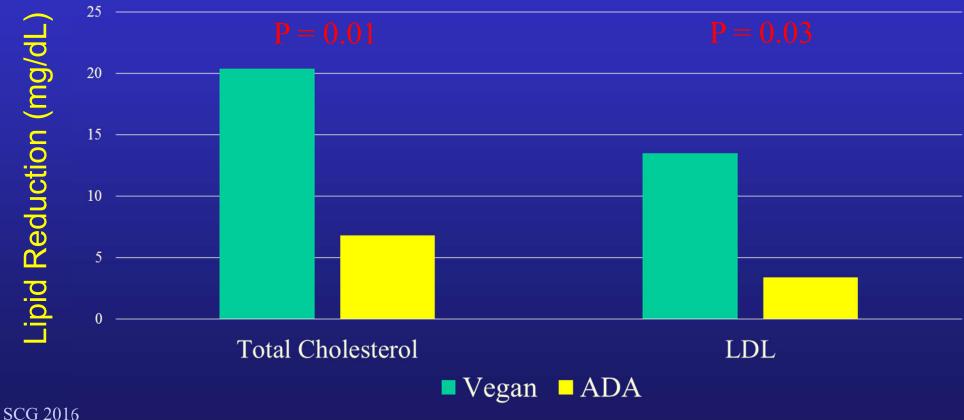






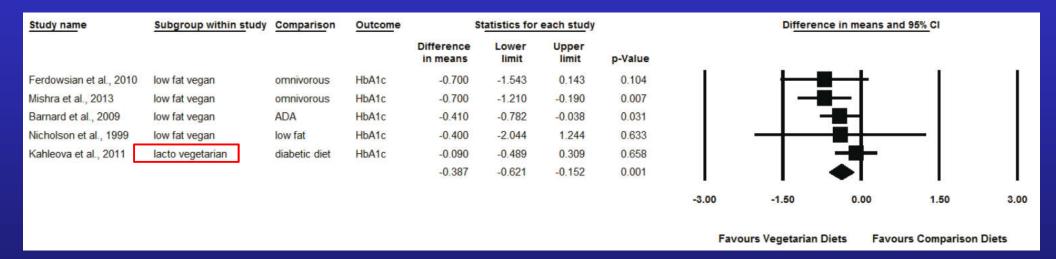

# RCT Vegan vs ADA diet in NIDDM Change in HBA1c (74 wks)






# RCT Vegan vs ADA diet in NIDDM Change in weight & BMI (74 wks)





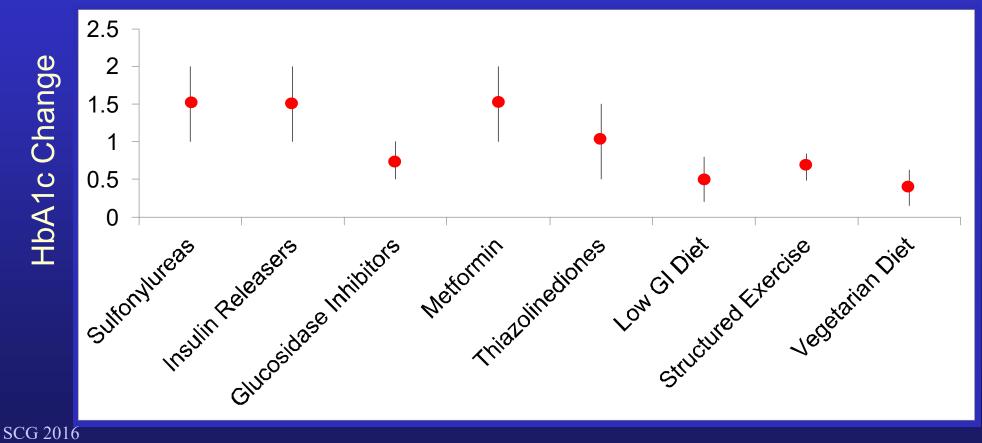

## RCT Vegan vs ADA diet in NIDDM Change in Lipids (74 wks)





### Meta: Vegetarian Diets & Diabetes Control




Overall mean drop in HbA1c of 0.39%

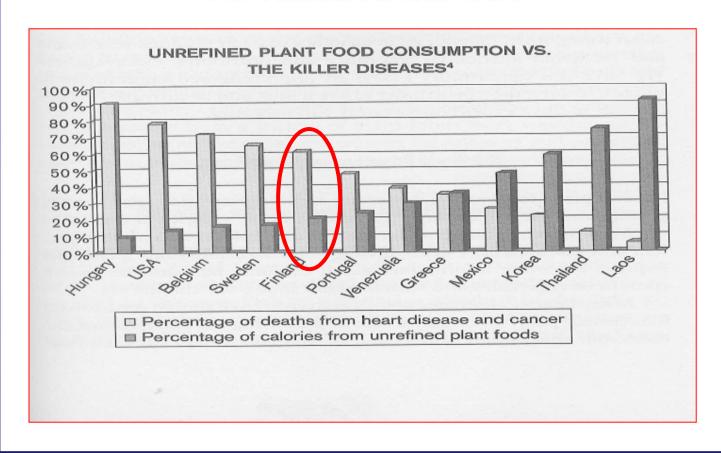


P = 0.001

P for heterogeneity = 0.389

## Diabetes: Oral Agents, Diet (Low GI, Vegetarian), Exercise






## Heart Disease

SCG 2012



## UNREFINED PLANT FOOD CONSUMPTION VS. KILLER DISEASES







World Health Statistics Annual 1994–1998. Online version. www.who.int/whosis; Food and Agriculture Organization of the United Nations. Statistical database food balance sheets, 1961–1999. Available online at www.fao.org; National Institutes of Health. Global cancer rates, cancer death rates among 50 countries, 1986–1999. Available online at www.nih.gov.

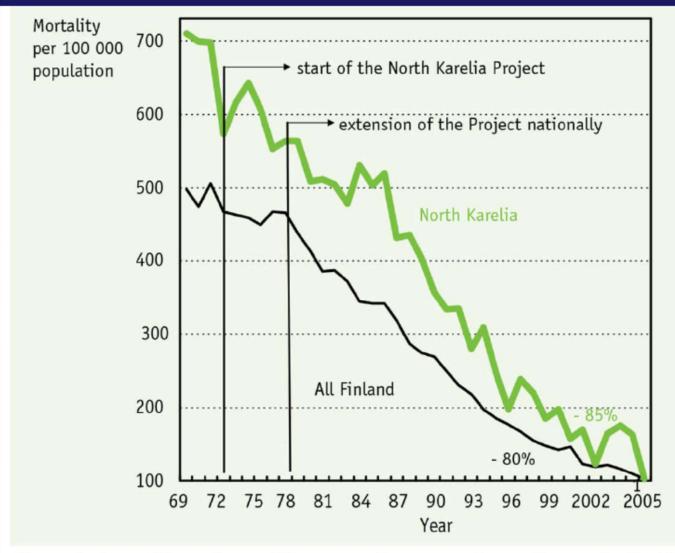



Figure 1. Age-adjusted mortality rates of coronary heart disease in North Karelia



## Mortality Changes, N Karelia, 1970-2006

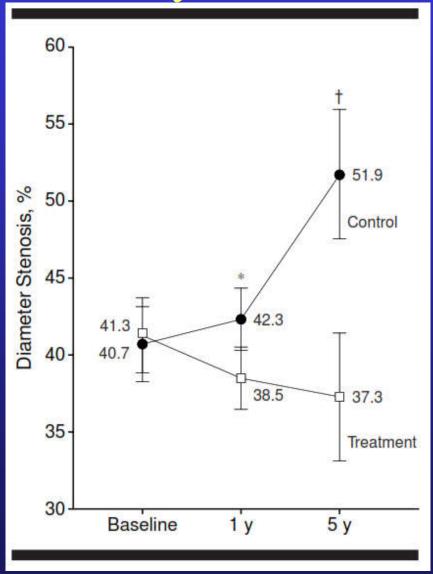
|                        | 1969-1971 | 2006 | Change |
|------------------------|-----------|------|--------|
| All causes             | 1 509     | 572  | -62%   |
| All cardiovascular     | 855       | 182  | -79%   |
| Coronary heart disease | 672       | 103  | -85%   |
| All cancers            | 271       | 96   | -65%   |
| Lung cancers           | 147       | 30   | -80%   |



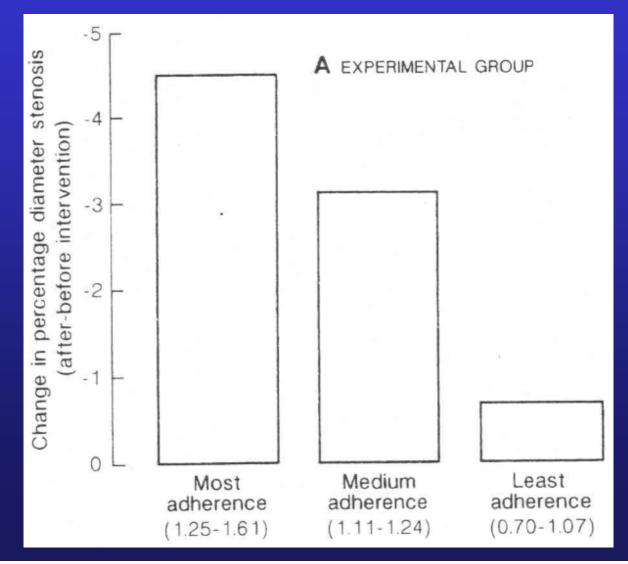
## RCT Diet + Lifestyle in CAD

Aim: Assess effect of a comprehensive lifestyle intervention for 1 year in pts with atherosclerosis.

Patients: Angiographically documented CAD (1, 2 or 3 vessels)


- EF > 25%, no MI last 6 weeks

Randomised (n=28) (control = 20)


- 1) Low-fat vegetarian diet
- 2) Moderate aerobic exercise
- 3) Stress management training
- 4) Stopping smoking
- 5) Group support

Progression of CAD (195 lesions) assessed by blinded quantitative coronary angiography at baseline and after 1 year.

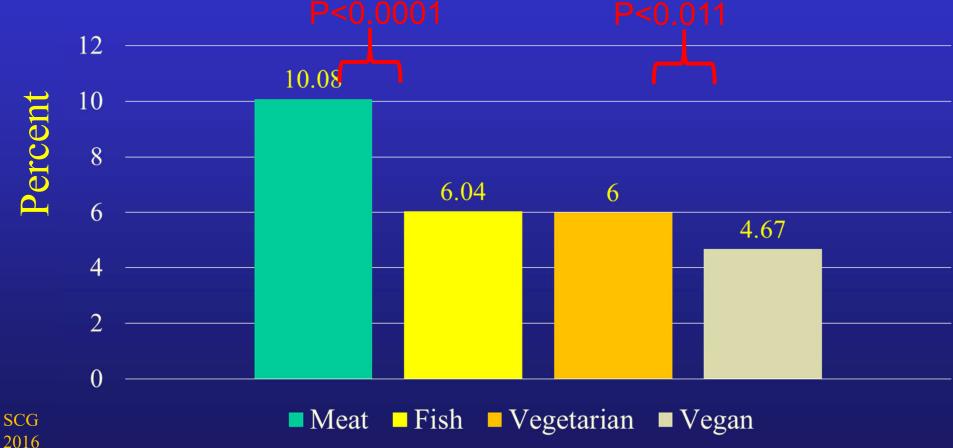
## RCT Lifestyle in CAD: 5 Yr Results



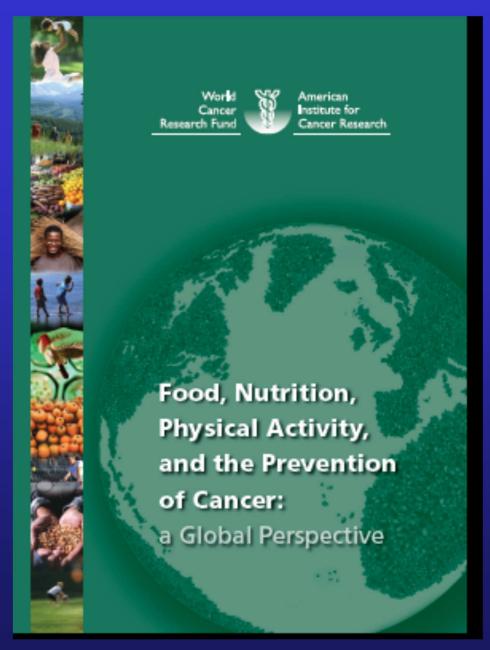
# RCT Lifestyle in CAD: Role of Adherence



SCG 2017




## What about Cancer?


SCG 2016



## UK Study: All Cancers in meat (32,491), fish (8612), vegetarians (18,298) vegans (2246)

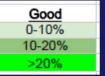






SCG 2007




http://www.dietandcancerreport.org/

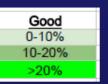
### Food, Nutrition & Prevention of Cancer

|                        | #<br>Studies | Type Studies | Type of<br>outcome | Result                                  | Significant<br>(p<0.05) |
|------------------------|--------------|--------------|--------------------|-----------------------------------------|-------------------------|
| Nasopharynx            | Studies      | Type Studies | outcome            | Kesuit                                  | (p<0.00)                |
|                        |              | Occasional   | Deletine Diele     | OCO/ in any and a partition of an array | V                       |
| Salted Fish            | 9            | Case-control | Relative RISK      | 28% increase per time per week          | Yes                     |
|                        |              |              |                    |                                         |                         |
| Mouth/pharynx/larynx   |              |              |                    |                                         |                         |
| Non-starchy vegetables | 3            | Case-control | Relative Risk      | 38% decrease per 50g per day            | Yes                     |
| Fruits                 | 7            | Case-control | Relative Risk      | 28% decrease per 100g per day           | Yes                     |
| Citrus fruits          | 6            | Case-control | Relative Risk      | 24% decrease per 50g per day            | Yes                     |
| Alcoholic drinks       | 2            | Cohort       | Relative Risk      | 24% increase per drink per week         | Yes                     |
| Alcoholic drinks       | 31           | Case-control | Relative Risk      | 3% increase per drink per week          | Yes                     |
|                        |              |              |                    |                                         |                         |
| Esophagus              |              |              |                    |                                         |                         |
| Non-starchy vegetables | 5            | Case-control | Relative Risk      | 13% decrease per 50g per day            | Borderline              |
| Raw vegetables         | 5            | Case-control | Relative Risk      | 31% decrease per 50g per day            | Yes                     |
| Fruits                 | 8            | Case-control | Relative Risk      | 44% decrease per 100g per day           | Yes                     |
| Citrus fruits          | 7            | Case-control | Relative Risk      | 30% decrease per 50g per day            | Yes                     |
| Alcoholic drinks       | 23           | Case-control | Relative Risk      | 4% increase per drink per week          | Yes                     |
|                        |              |              |                    |                                         |                         |
| Lung                   |              |              |                    |                                         |                         |
| Fruits                 | 15           | Cohort       | Relative Risk      | 6% decrease per serving per day         | Yes                     |
| Fruits                 | 14           | Case-control | Relative Risk      | 20% decrease per serving per day        | Yes                     |
|                        |              |              |                    |                                         |                         |
| Breast                 |              |              |                    |                                         |                         |
| Ethanol                | 9            | Cohort       | Relative Risk      | 10% increase per 10g per day            | Yes                     |
| Ethanol                | 7            | Case-control |                    | 6% increase per 10g per day             | Yes                     |

SCG 2012






Bad 0-10% 10-20% > 20%

### Food, Nutrition & Prevention of Cancer

| Stomach                  |    |              |               |                                   |            |
|--------------------------|----|--------------|---------------|-----------------------------------|------------|
| Non-starchy vegetables   | 21 | Case-control | Relative Risk | 30% decrease per 100 g per day    | Yes        |
| Non-starchy vegetables   | 9  | Cohort       | Relative Risk | 2% decrease per 100g per day      | No         |
| Green-yellow vegetables  | 6  | Cohort       | Relative Risk | 37% decrease per 100g per day     | Yes        |
| Green-yellow vegetables  | 12 | Case-control | Relative Risk | 41% decrease per 100 g per day    | Yes        |
| White or pale vegetables | 3  | Cohort       | Relative Risk | 51% decrease per 100g per day     | Borderline |
| White or pale vegetables | 3  | Case-control | Relative Risk | 43% decrease per 100g per day     | Borderline |
| Raw vegetables           | 4  | Cohort       | Relative Risk | 20% decrease per 100g per day     | No         |
| Raw vegetables           | 14 | Case-control | Relative Risk | 50% decrease per 100g per day     | Yes        |
| Allium vegetables        | 2  | Cohort       | Relative Risk | 45% decrease per 100g per day     | Yes        |
| Allium vegetables        | 15 | Case-control | Relative Risk | 41% decrease per 100g per day     | Yes        |
| Fruits                   | 10 | Cohort       | Relative Risk | 5% decrease per 100g per day      | No         |
| Fruits                   | 28 | Cohort       | Relative Risk | 33% decrease per 100g per day     | Yes        |
| Total salt intake        | 3  | Cohort       | Relative Risk | 8% increase per gram per day      | Yes        |
| Total salt intake        | 9  | Case-control | Relative Risk | 1% increase per gram per day      | No         |
| Salted food              | 4  | Cohort       | Relative Risk | 32% increase per serving per day  | No         |
| Salted food              | 5  | Case-control | Relative Risk | 420% increase per serving per day | Yes        |
|                          |    |              |               |                                   |            |
| Pancreas                 |    |              |               |                                   |            |
| Folate                   | 2  | Cohort       | Relative Risk | 16% decrease per 100 mcg per day  | Yes        |
|                          |    |              |               |                                   |            |
| Liver                    |    |              |               |                                   |            |
| Alcoholic drinks         | 5  | Case-control |               | 18% increase per drink per week   | Yes        |
| Ethanol                  | 6  | Cohort       | Relative Risk | 10% increase per 10g per day      | Yes        |
| Ethanol                  | 15 | Case-control | Relative Risk | 17% increase per 10g per day      | Yes        |
|                          |    |              |               |                                   |            |
| Colon                    |    |              |               |                                   |            |
| Dietary Fiber            | 10 | Cohort       | Relative Risk | 10% decrease per 10g per day      | Yes        |
| Dietary folate           | 6  | Cohort       | Relative Risk | 16% decrease per 100 mcg per day  | Yes        |
| Red meat                 | 9  | Cohort       | Relative Risk | 43% increase per time per week    | Yes        |
| Red meat                 | 3  | Cohort       | Relative Risk | 29% increase per 100g per day     | Yes        |
| Processed meat           | 6  | Cohort       | Relative Risk | 21% increase per 50g per day      | Yes        |
| Ethanol                  | 11 | Cohort       | Relative Risk | 9% increase per 10g per day       | Yes        |









### RCT Lifestyle Change & Prostate Cancer

Population: Men (n=93) who had low risk prostate cancer and had chosen not to undergo any conventional treatment.

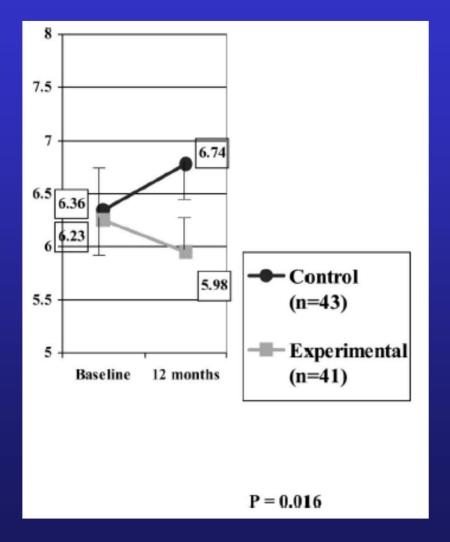
Design: RCT

Control group told to follow the advice of their physician about lifestyle changes

#### **Intervention (for 1 year)**

- 1) Vegan diet + soy supplementation (~ 10% calories from fat)
- 2) Fish oil (3 g/day)
- 3) Vitamin E (400 IU/day) + Selenium (200 mcg/d) + Vitamin C (2g/d)
- 4) Moderate aerobic exercise (walking 30 min 6 days per week)
- 5) Stress management for 60 min per day

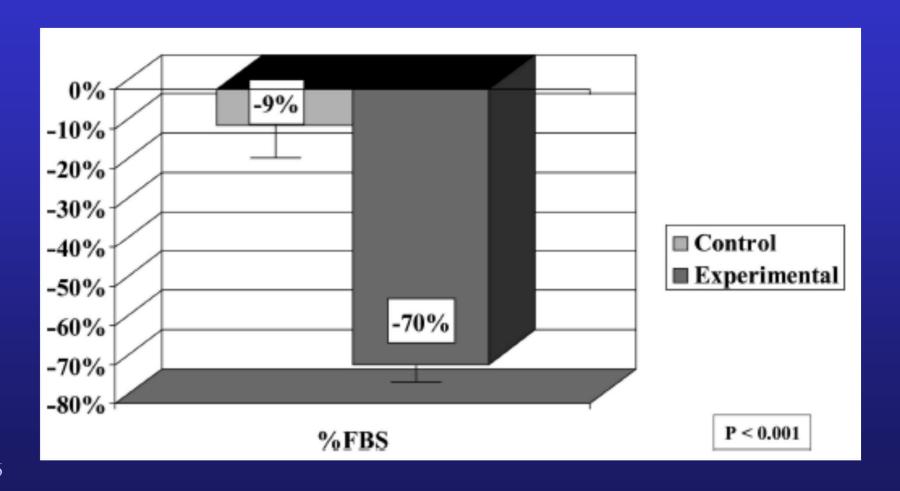
#### **Outcomes**




SCG 2016 1) PSA (baseline & 1 year)



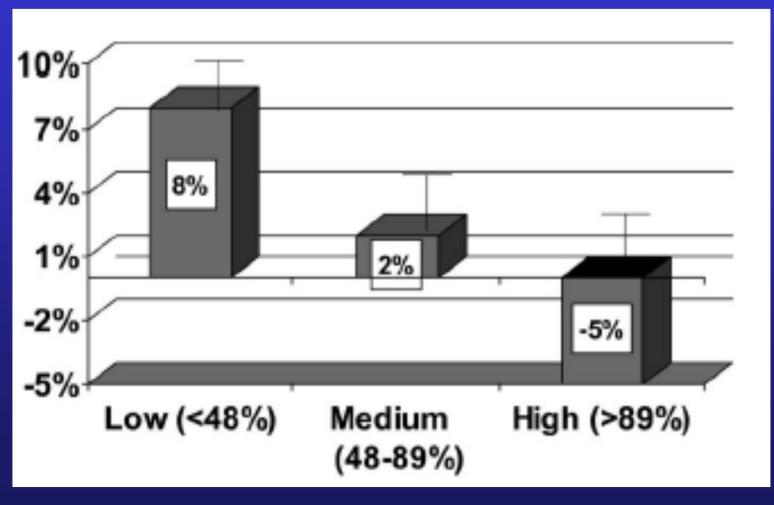
2) Inhibition of LNCaP prostate cancer cells by serum


## RCT Lifestyle Change & Prostate Cancer Mean change in serum PSA after 1 year



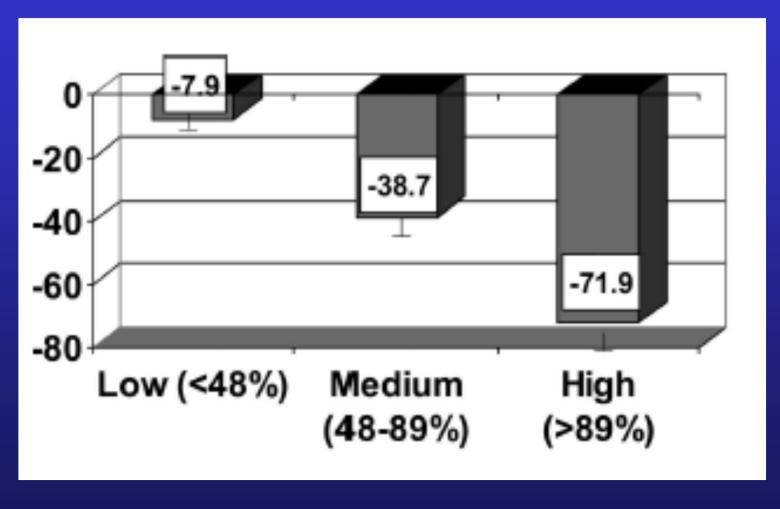
SCG 2013




## RCT Lifestyle Change & Prostate Cancer Mean change in % LNCaP cell Growth at 1 year








## RCT Lifestyle Change & Prostate Cancer Lifestyle change (tertiles) and PSA change





## RCT Lifestyle Change & Prostate Cancer Lifestyle change (tertiles) and LNCaP growth



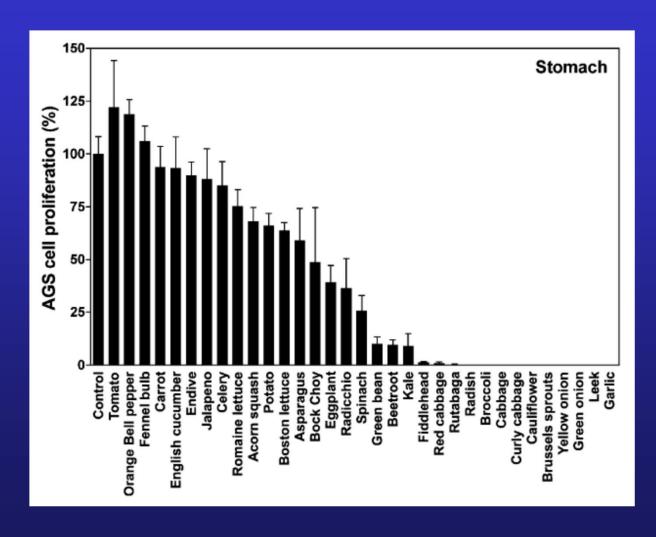


r = -0.37, p<0.001

# Antiproliferative & antioxidant activities of common vegetables

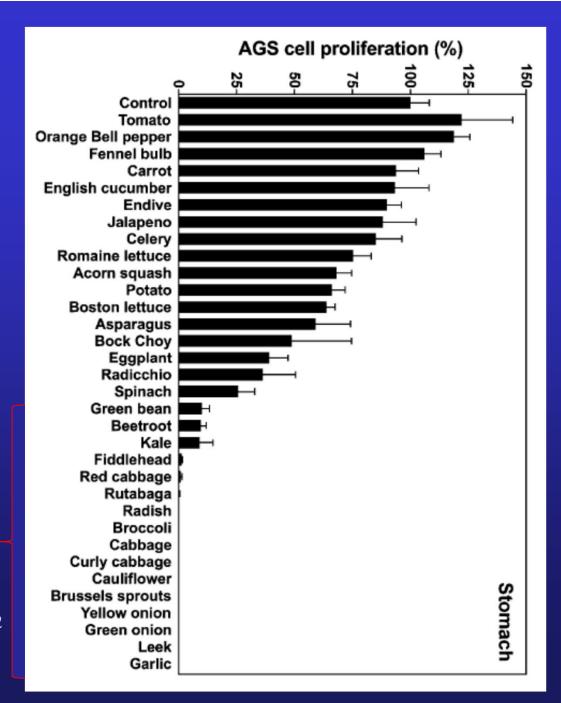
- Epidemiologic studies have shown a close relationship between diet and cancer especially the intake of fruit & vegetables
- Aim of present study: Better delineate above relationship by evaluating the inhibitory effects of extracts from 34 vegetables on 8 different tumour cell lines.
- Processing of fresh local vegetabls included passage thru a domestic juice extractor, centrifugation (50,000 G x 45 min) and sterilization by filtering (0.22 um).




# Antiproliferative & antioxidant activities of common vegetables

| Tissue / Neoplasm         | Name of cell line | <u>Comment</u> |
|---------------------------|-------------------|----------------|
| Stomach adenocarcinoma    | AGS               | ATCC CRL1-1739 |
| Breast adenocarcinoma     | MCF-7             | ATCC HTB-22    |
| Pancreatic carcinoma      | Panc-1            | ATCC CRL-1469  |
| Prostate adenocarcinoma   | PC-3              | ATCC CRL-1435  |
| Lung carcinoma            | A 549             | ATCC CCL-185   |
| Medulloblastoma           | Daoy              | ATCC HTB-186   |
| Glioblastoma              | MG                | ATCC HTB-14    |
| Renal carcinoma           | Caki-2            | ATCC HTB-186   |
| Normal dermal fibroblasts | NHDF              |                |

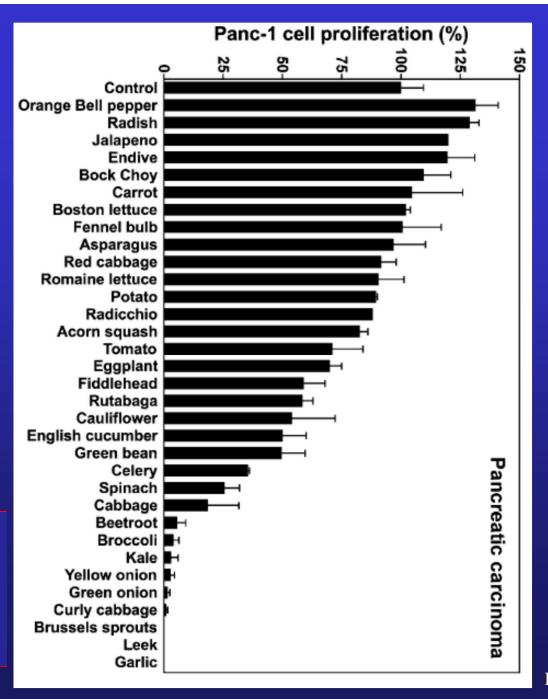
SCG 2012




## Antiproliferative activities of vegetables Stomach Cancer



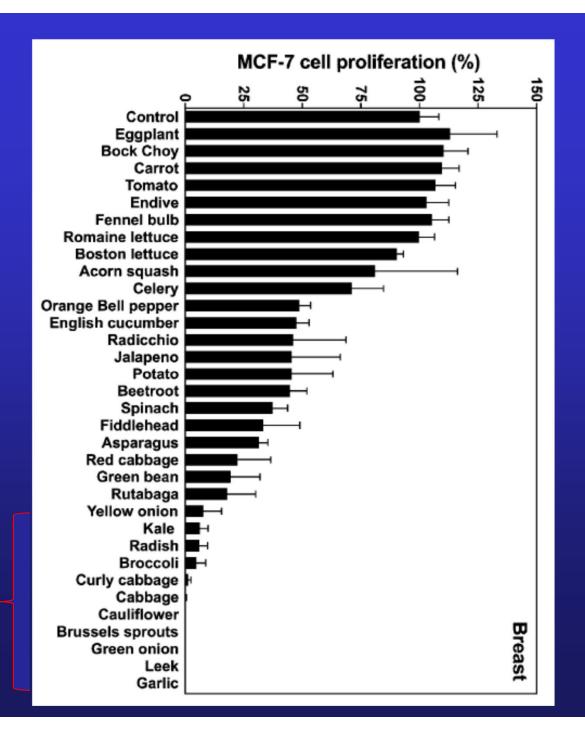







### **Stomach Cancer**

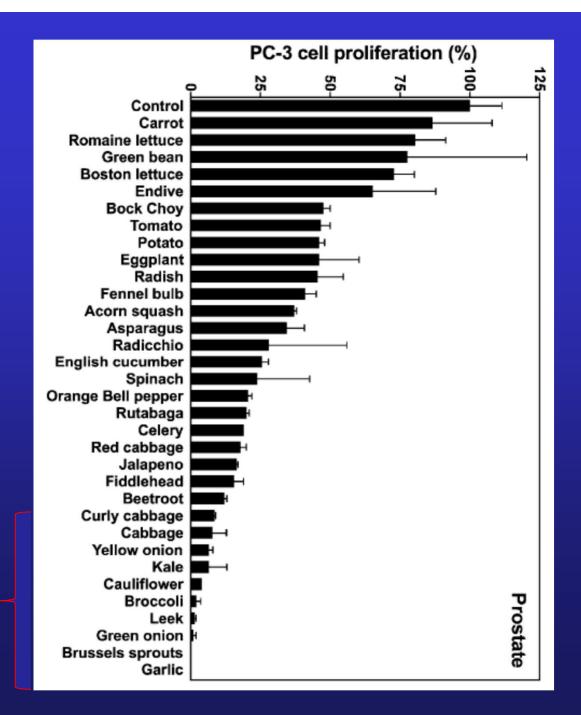
SCG 2012






## Pancreatic Cancer

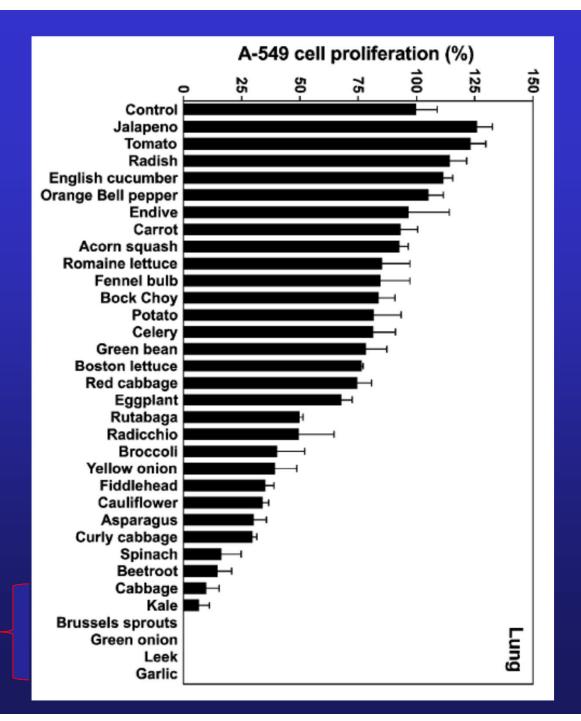
SCG 2012






### **Breast Cancer**

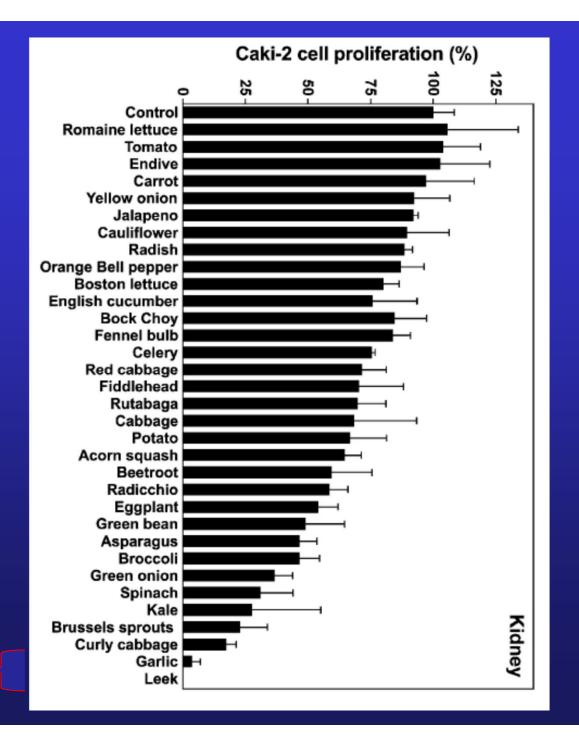
SCG 2012






## Prostate Cancer

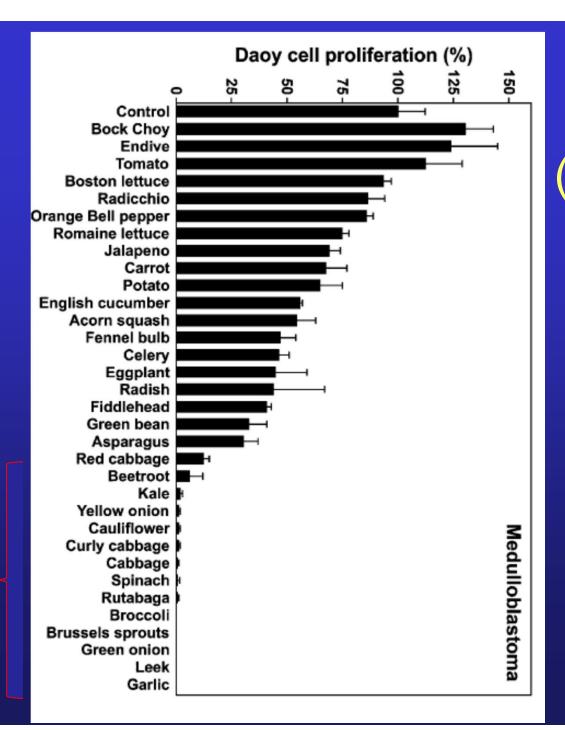
SCG 2012






### **Lung Cancer**

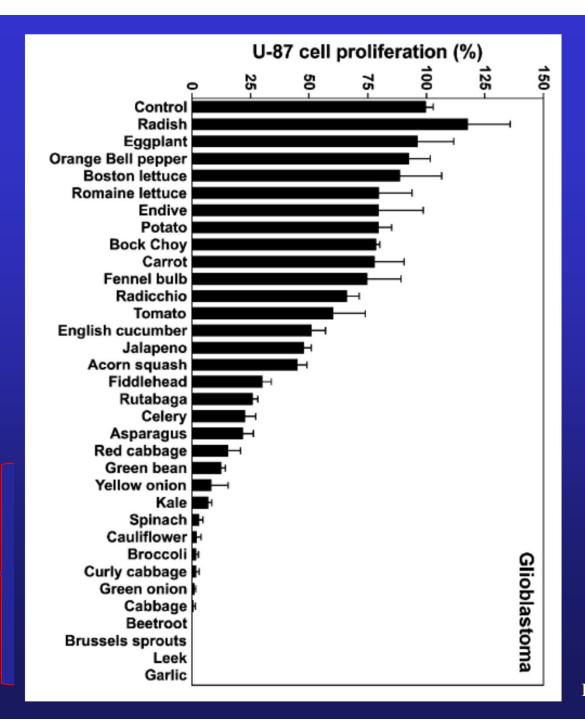
SCG 2012






### **Kidney Cancer**

SCG 2012






## Brain Cancer (Medulloblastoma)

SCG 2012



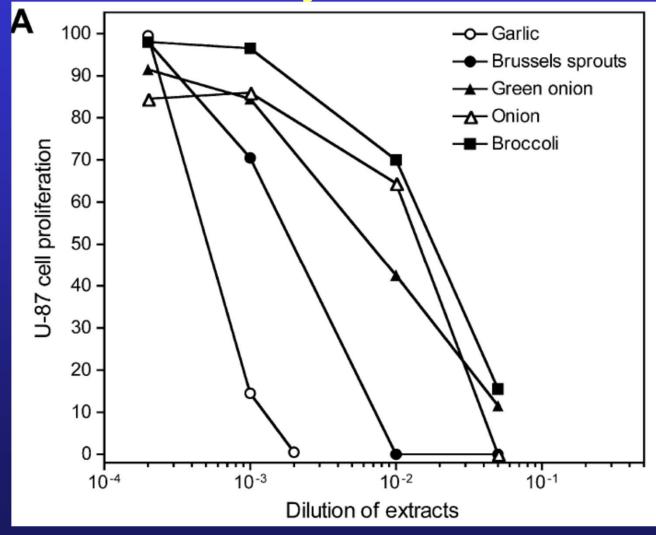


# Brain Cancer (Glioblastoma)

SCG 2012



## Antiproliferative Effect of Vegetables


| <u>Little</u>       | <u>Intermediate</u> | <u>High</u>  | <u>Very High</u>  |
|---------------------|---------------------|--------------|-------------------|
| 50% on < 2          | 50% on 2-4          | 50% on >= 4  | >=50 on all lines |
| Acorn squash        | Celery              | Asparagus    | Brussel sprouts   |
| Bok choy            | Eggplant            | Beetroot     | Cabbage           |
| Boston lettuce      |                     | Broccoli     | Curly cabbage     |
| Carrot              |                     | Cauliflower  | Garlic            |
| Endive              |                     | Fiddlehead   | Green onion       |
| English cucumber    |                     | Green bean   | Kale              |
| Fennel bulb         |                     | Radish       | Leek              |
| Jalapeno            |                     | Red cabbage  | Spinach           |
| Orange sweet pepper |                     | Rutabaga     |                   |
| Potato              |                     | Yellow onion |                   |
| Radicchio           |                     |              |                   |
| Romaine lettuce     |                     |              |                   |
| Tomato Cell line    |                     |              |                   |

SCG 2012



Lung, Kidney, Medulloblastoma, Glioblastoma

## Antiproliferative activities of vegetables Potency of inhibition





## Antiproliferative & antioxidant activities of common vegetables: Discussion & Conclusions

- While governments recommend at least 5 servings of 'fruit & vegetables'
  per day as a way to reduce cancer & chronic diseases, this study shows
  that increased consumption of specific foods with the highest
  phytochemical content must also be strongly encouraged.
- Potato, carrots, tomatoes, and leaf lettuces which account for 60% of US total per capita vegetable intake lack a significant cancer inhibitory effect.
- A diversified diet (with several different classes of vegetables) is essential for the effective prevention of cancer.
- A number of cruciferous vegetables (kale, brussels sprouts, broccoli, cabbage) and Allium vegetables (garlic, leek, green onions, yellow onion) possess very potent inhibitory activities against all tested cell lines.



### Conclusions: Diet & Cancer

- 1) Red meat consumption correlates with total, CVD and cancer mortality.
- 2) Real world experience has shown that a national public health based intervention can reduce mortality from all causes, cardiac and malignancy by over 60 % over the course of 30 years.
- 3) Observational studies have shown that
  - 1) Cancer incidence rates: Omnivores > Vegetarians > Vegans
  - 2) Intake of variety of fruits and vegetables associated with lower rates of many cancers
  - 3) Adolescent fruit and vegetable intake may predict future risk of breast cancer.
- 4) Randomized controlled trials have shown:
  - Increase of 1.1 portions (F+V)/day gives 9% decrease in breast CA (NS) and 17% decrease in ovarian CA (Sig)
  - 2) High vegetable diet after the diagnosis of breast cancer is ineffective
  - 3) Flaxseed
    - 1) Breast cancer decreased proliferation & increased apoptosis
    - 2) Prostate cancer decreases PSA
- 5) In vitro it appears some vegetables have potent anti-cancer effects (similar results from case-control human studies)



### My Lifestyle Then & Now

<u>Then</u> <u>Now</u>

### **Breakfast**

- Bran flakes + granola + milk

### Lunch

Sandwich +/- veggies + diet coke

#### <u>Suppers</u>

- Spaghetti Bolognese +/- salad
- Chicken curry, rice, dal

#### **Breakfast**

- Oats + Chia + blueberries + flax

#### Lunch

- Kale salad + nuts

#### Suppers

- Veggie stir fry (Mediterranean, Asian, Indian) w garlic/ginger
- Rice/quinoa, dal/beans

Exercise: Minimal => 2-3 hrs per week

### Food As Prevention

Avoiding chronic disease through a healthy diet

HOME

START HERE V

RESOURCES ~

VIDEOS ETC >

ABOUT ~

#### Welcome to 'Food as Prevention'

#### Welcome to the Food as Prevention website!

This website is maintained by a Canadian physician who is a gastroenterologist (specialist in diseases of the intestines) with the aim of connecting members of the public with information on a healthier diet to lower mortality and the risk of developing diseases such as heart attacks, strokes, adult-onset (type 2) diabetes, and cancer.

I have a masters degree in health research methodology and have tried to make the information in this site as evidence-based as possible. Fortunately, the peer-reviewed medical literature has a lot of information on the role of food in preventing disease.

The site is divided into an 'evidence' section that guides you through evidence about the healthiest diet and an 'application' section to help you make changes to your diet and lifestyle.



This site is aimed at several audiences:

1. Members of the general public who are looking for credible information on the healthiest diet. I

SCG 2012



## MICHAEL GREGER, M.D. DAILY DOZEN



1. BEANS







7. FLAXSEEDS



2. BERRIES



8. NUTS



3. OTHER FRUITS







9. SPICES



4. CRUCIFEROUS VEGETABLES



10. WHOLE GRAINS







5. GREENS





11. BEVERAGES



5 SERVINGS

6. OTHER VEGETABLES





12. EXERCISE



SCG 2017



INFOGRAPHIC created by Modern Vegan Family based on healthy diet recommendations by Dr. Michael Greger's DAILY DOZEN; suggested daily servings and New York Times Bestselling Book, "How Not to Die". www.nutrition(state.org

### www.foodasprevention.com

- Newsletter

4leafsurvey.com

DVD: Forks Over Knives



Book How Not to Die - Greger

### Food as Medicine Elective

FoodAsPrevention.com/student

## Questions